

 $\star\star$

الامتحان الوطني الموحد للبكالوريا

الدورة العادية 2016 - الموضوع - 0830% > 180% | 180% + 180% + 180% |

NS 25

المركز الوطني للتقويم والامتحانات والتوجيه

- o La durée de l'épreuve est de 4 heures.
- o L'épreuve comporte 5 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.

L'usage de la calculatrice n'est pas autorisé

L'usage de la couleur rouge n'est pas autorisé

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

EXERCICE 1: (3.5 points)

On rappelle que $(M_3(`),+,')$ est un anneau unitaire d'unité $I= \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \end{cases}$ et que $(\pounds,+,')$ est $0 & 0 & 0 \end{cases}$ et que $(\pounds,+,')$ est $0 & 0 & 0 \end{cases}$

un corps commutatif.

Pour tout
$$(x, y)$$
 de '2 on pose : $M(x, y) = \begin{cases} x + y & 0 & -2y \\ 0 & 0 & 0 \end{cases}$ $\stackrel{\stackrel{\cdot}{=}}{\stackrel{\cdot}{=}}$ et $E = \{M(x, y); (x, y) \stackrel{\cdot}{=} \end{cases}$ $\begin{cases} y & 0 & x - y \stackrel{\stackrel{\cdot}{=}}{\stackrel{\cdot}{=}} \end{cases}$

- 0.5 1- Montrer que E est un sous-groupe du groupe $(M_3(\cdot),+)$
- 2-Vérifier que :

$$("(x,y)\dot{z}^{(2)}) ("(x',y')\dot{z}^{(2)}) : M(x,y)' M(x',y') = M(xx'-yy',xy'+yx')$$

3- On pose : $E^* = E - \{M(0,0)\}$ et on considère l'application $j: \pounds^* \otimes E$ qui au nombre complexe z = x + iy associe la matrice M(x,y) de E , avec (x,y) \dot{z} ' 2

- 0.25 a) Montrer que j est un homomorphisme de (f_*) vers (E,')
- 0.75 b) En déduire que $(E^*, ')$ est un groupe commutatif d'élément neutre M(1,0).
- 0.5 4- Montrer que (E, +, ') est un corps commutatif.

5- On pose :
$$A = \begin{matrix} 0 & 0 & 0_{\frac{\cdot}{2}} \\ 0 & 1 & 0_{\frac{\cdot}{2}} \\ 0 & 0 & 0_{\frac{\cdot}{2}} \end{matrix}$$

- 0.5 a) Calculer A' M(x,y) pour $M(x,y) \dot{\tau} E$
- 0.5 b) En déduire qu'aucun élément de E n'admet de symétrique dans $(M_3(\cdot), \cdot)$

EXERCICE 2: (3points)

<u>Première partie</u>: Soit (a,b) dans $\square^* \times \square^*$ tel que le nombre **premier** 173 divise $a^3 + b^3$

- 0.25 | 1- Montrer que : $a^{171} \equiv -b^{171}$ [173] (remarquer que : $171 = 3 \times 57$)
- 0.25 2- Montrer que : 173 divise a si et seulement si 173 divise b
- 0.25 | 3- On suppose que 173 divise a. Montrer que 173 divise a+b
 - 4- On suppose que 173 ne divise pas a.
- 0.5 a) En utilisant le théorème de FERMAT, montrer que : $a^{172} \equiv b^{172}$ [173]
- 0.5 b) Montrer que : $a^{171}(a+b) \equiv 0$ [173]
- 0.5 c) En déduire que 173 divise a+b

<u>Deuxième partie</u> : On considère dans $\square^* \times \square^*$ l'équation suivante :

(E)
$$x^3 + y^3 = 173(xy+1)$$

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

Soit (x,y) un élément de $\square^* \times \square^*$ solution de (E) , on pose : x+y=173k avec $k \in \square^*$

0.25 1- Vérifier que :
$$k(x-y)^2 + (k-1)xy = 1$$

0.5 2- Montrer que
$$k = 1$$
 puis résoudre l'équation (E) .

EXERCICE 3: (3.5 points)

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On considère dans le plan complexe deux points ${\cal M}_1$ et ${\cal M}_2$ tels que les points ${\cal O}$, ${\cal M}_1$ et ${\cal M}_2$ sont distincts deux à deux et non alignés.

Soient z_1 et z_2 les affixes respectives des points \pmb{M}_1 et \pmb{M}_2 et soit \pmb{M} le point dont l'affixe z

vérifie la relation :
$$z = \frac{2z_1z_2}{z_1 + z_2}$$

0.5 1- a) Montrer que :
$$\frac{z_1 - z}{z_2 - z} \times \frac{z_2}{z_1} = -1$$

- 0.5 b) En déduire que le point M appartient au cercle circonscrit au triangle $\mathit{OM}_1\mathit{M}_2$
- 0.5 2- Montrer que si $z_2 = \overline{z_1}$ alors M appartient à l'axe des réels.
 - 3- On suppose que M_2 est l'image de M_1 par la rotation de centre O et de mesure d'angle α où α est un réel de l'intervalle $\left]0,\pi\right[$
- 0.5 a) Calculer z_2 en fonction de z_1 et de α
- 0.5 b) Montrer que le point M appartient à la médiatrice du segment $\left[M_1M_2\right]$
 - 4- Soit $\, heta\,$ un réel **donné** de l'intervalle $\,]0,\pi[\,$.

On suppose que z_1 et z_2 sont les deux solutions de l'équation : $6t^2 - (e^{i\theta} + 1)t + (e^{i\theta} - 1) = 0$

- 0.5 a) Sans calculer z_1 et z_2 vérifier que : $z=2\frac{e^{i\theta}-1}{e^{i\theta}+1}$
 - b) Donner en fonction de $\,{f q}\,$,la forme trigonométrique du nombre complexe $\,z\,$.

EXERCICE 4: (7points)

Première partie :

0.5

- 1- En appliquant le théorème des accroissements finis à la fonction $t\mapsto e^{-t}$, montrer que pour tout réel strictement positif x, il existe un réel θ compris entre 0 et x tel que : $e^{\theta} = \frac{x}{1 e^{-x}}$
- 2- En déduire que : (0.25)

a) ("
$$x > 0$$
); 1- $x < e^{-x}$

0.25 b) ("
$$x > 0$$
); $x + 1 < e^x$

0.25 c) ("
$$x > 0$$
); $0 < \ln\left(\frac{xe^x}{e^x - 1}\right) < x$

الصفحة	
/	4
5	

0.25

0.5

0.75

0.75

0.5

0.5

0.5

0.5

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

Deuxième partie :

On considère la fonction numérique f définie $\sup[0,+\infty[$ par :

$$f(x) = \frac{xe^x}{e^x - 1} \quad \text{si} \quad x > 0 \quad \text{et} \quad f(0) = 1$$

et soit ig(Cig) la courbe représentative de f dans le plan muni d'un repère orthonormé $ig(O, \vec{i}, \vec{j}ig)$.

0.5 1- a) Montrer que la fonction f est continue à droite en 0.

b) Montrer que : $\lim_{x \to +\infty} (f(x) - x) = 0$ puis interpréter graphiquement le résultat obtenu.

2-a) Montrer que : (" x^3 0) $x - \frac{x^2}{2} \pounds - e^{-x} + 1$

(On pourra utiliser le résultat de la question 2-a) de la première partie)

0.5 b) En déduire que : (" x^3 0) $\frac{x^2}{2} - \frac{x^3}{6} \pounds e^{-x} + x - 1 \pounds \frac{x^2}{2}$

3-a) Vérifier que : ("x > 0) $\frac{f(x)-1}{x} = \frac{e^{-x} + x - 1}{x^2} f(x)$

b) En déduire que : $\lim_{x\to 0^+} \frac{f(x)-1}{x} = \frac{1}{2}$ puis interpréter le résultat obtenu.

4-a) Montrer que f est dérivable en tout point de $\left]0,+\infty\right[$ et que :

("x>0) $f'(x) = \frac{e^x(e^x - 1 - x)}{(e^x - 1)^2}$

b) En déduire que la fonction f est strictement croissante sur $\left[0,+\infty\right[$. (On pourra utiliser le résultat de la question 2-b) de la première partie)

Troisième partie :

On considère la suite numérique $(u_n)_{n\geq 0}$ définie par : $u_0>0$ et $u_{n+1}=\ln(f(u_n))$ pour $n \not \subset \Psi$

a) Montrer que pour tout entier naturel n on a : $u_n > 0$

b) Montrer que la suite $(u_n)_{n\geq 0}$ est strictement décroissante et en déduire qu'elle est convergente. (On pourra utiliser le résultat de la question 2-c) de la première partie)

c) Montrer que 0 est l'unique solution de l'équation : $\ln(f(x)) = x$ puis déterminer la limite de la suite $(u_n)_{n \ge 0}$

EXERCICE 5: (3 points)

On considère la fonction numérique F définie sur l'intervalle $I=\left]0,+\infty\right[$ par :

$$F(x) = \int_{\ln 2}^{x} \frac{1}{\sqrt{e^t - 1}} dt$$

0.5 1-a) Etudier le signe de F(x) pour tout x de I

0.5 b) Montrer que la fonction F est dérivable sur l'intervalle I et calculer F'(x) pour tout x de I .

الصفحة 5	NS 25	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	
0.25	c) Montr	er que la fonction F est strictement croissante sur l'intervalle \emph{I}	
0.5	2-a) En utilisant la technique de changement de variable en posant : $u=\sqrt{e^t-1}$, montrer que pour		
0.5			
0.25	2.3) Montrer and la fonction F act upo bijection de l'intervalle. I dans un intervalle. I and I and		
	déterminera.		
0.5	b) Déterminer F^{-1} la bijection réciproque de F .		
FIN			